The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila
نویسندگان
چکیده
The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired.
منابع مشابه
NHK-1 phosphorylates BAF to allow karyosome formation in the Drosophila oocyte nucleus
Accurate chromosome segregation in meiosis requires dynamic changes in chromatin organization. In Drosophila melanogaster, upon completion of recombination, meiotic chromosomes form a single, compact cluster called the karyosome in an enlarged oocyte nucleus. This clustering is also found in humans; however, the mechanisms underlying karyosome formation are not understood. In this study, we rep...
متن کاملA maternal screen for genes regulating Drosophila oocyte polarity uncovers new steps in meiotic progression.
Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been l...
متن کاملThe conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster
Conventional centrosomes are absent from the spindle in female meiosis in many species, but it is not clear how multiple chromosomes form one shared bipolar spindle without centrosomes. We identified a female sterile mutant in which each bivalent chromosome often forms a separate bipolar metaphase I spindle. Unlike wild type, prophase I chromosomes fail to form a single compact structure within...
متن کاملThe conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in Drosophila oocytes
In Drosophila oocytes, after the completion of recombination, meiotic chromosomes form a compact cluster called the karyosome within the nucleus, and later assemble spindle microtubules without centrosomes. Although these oocyte-specific phenomena are also observed in humans, their molecular basis is not well understood. Here, we report essential roles for the conserved kinase SRPK in both kary...
متن کاملThe Drosophila hus1 gene is required for homologous recombination repair during meiosis
The checkpoint proteins, Rad9, Rad1, and Hus1 (9-1-1), form a complex which plays a central role in the DNA damage-induced checkpoint response. Previously, we demonstrated that Drosophilahus1 is essential for activation of the meiotic checkpoint elicited in double-strand DNA break (DSB) repair enzyme mutants. The hus1 mutant exhibits similar oocyte nuclear defects as those produced by mutations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010